GRACE
Gravity Science & Its Impact on Mission Design

Srinivas V Bettadpur (UT/CSR)
Michael M Watkins (JPL)

(& several others with the GRACE Project)
Relation to Gravity Field

Inter-satellite Range & Derivatives

\[\rho(t) = \| \vec{r}_1(t) - \vec{r}_2(t) \| \]
\[\dot{\rho}(t) = \left[\vec{v}_1(t) - \vec{v}_2(t) \right] \cdot \hat{\epsilon} \rho \]
\[\ddot{\rho}(t) = \left[\vec{f}_1 - \vec{f}_2 \right] \cdot \hat{\epsilon} \rho + \frac{1}{\rho} \left[\delta v^2 - \dot{\rho}^2 \right] \]

Relationship to Gravity Field Model

\(\vec{r}_i, \vec{v}_i \) : Are implicitly determined by the following

- Initial position/velocity, estimated from data
- Gravitational forces, model parameters estimated from data
- Mean Gravity Field
 \[C_{lm}(t) = \langle C_{lm} \rangle \]
- Time Variable Gravity Field
 \(\delta C_{lm}(t) \)
 (Atmosphere, Ocean Tides & Variability, Hydrology, ...)
- Non-gravitational forces, modeled using
 the accelerometer measurements

\[\vec{f}_{ng} \]
Range Change Measurements (1)

- Each one-way phase measurement is similar to GPS phase measurement
- Dual-frequency (24 & 32 GHz) measurements
- The range-change (\& hence gravity) information is implicit in the time-of-flight
- Derivatives of range will be numerically obtained in data pre-processing

\[
\tau_1^2 = \frac{1}{c} \| \vec{r}_1(t) - \vec{r}_2(t - \tau_1^2) \|
\]

\[
\tau_2^1 = \frac{1}{c} \| \vec{r}_2(t) - \vec{r}_1(t - \tau_2^1) \|
\]
Range Change Measurements (2)

Impact on satellite design

• Accurate antenna offset knowledge: In-flight Calibration

• Thermally stable structural design
 – Hardware test results: 4 µ distortion for (worst-case) 1.5° - 2° C temperature variations at near 1 cpr
 – CHAMP test results: Expected variations ~ 0.5-1° C

• Temperature controlled instruments for noise reduction
 – All electronics units controlled to within 0.1° C

• Simultaneous GPS measurements for time-tag corrections
 – GPS & KBR measurements concurrent to within few picoseconds

• Precision attitude control for multipath reduction
 – Robust design to meet 0.5 mRad pointing control

• Minimize satellite CM variations in-flight
 – Fuel tanks isolated from each other
Accelerometer Measurement (1)

The instrument is sensitive to the sum of non-grav and rotational & gravity gradient accelerations

\[\vec{f}_{\text{exc}} = \vec{f}_{\text{ng}} + \vec{b}'' + 2\vec{\omega} \times \vec{b}' + \vec{\omega} \times \vec{\omega} \times \vec{b} + \vec{\dot{\omega}} \times \vec{b} - \vec{G} \cdot \vec{b} \]

The instrument introduces errors in the output accelerations

\[\vec{f}_{\text{obs}} = \vec{B} \quad \text{(Variable "Bias")} \]
\[+ \sum \cdot \vec{f}_{\text{exc}} \quad \text{(Variable Scale, Cross-coupling)} \]
\[+ \quad \text{Non-linear effects} \]
\[+ \quad \text{Noise} \]

When used in data analysis, the instrument output must be transformed to the inertial frame

\[\vec{f}_m = R(t) \cdot \vec{f}_{\text{obs}} : \text{Needs satellite attitude info} \]
Accelerometer Measurement (2)

Impact on satellite design

- ACC must be located at the satellite CG
 - CG control to 20 µ is possible
 - CG determination to 10-50 µ is possible
- Stable ACC alignment relative to attitude sensors
 - Alignment is stable to 0.3 mRad under flight loads
- Thermal control for noise reduction
 - Electronics controlled to within 0.1° C
- Thermal control for scale/bias stability
 - Sensor unit housed in vacuum & controlled to 0.1° C
 - Scale/Bias temperature sensitivity lower than expected
- Reduce angular rates (attitude control design)
 - Variations mostly from changing aerodynamic disturbance environment.
Mission Altitude

Science
• Variable Field:
 Signal @ lower harmonics
 Need longest possible data span
• Mean Field
 Need highest possible resolution

• Operational Constraints
 – Limited fuel & Lifetime (launch near solar maximum)
 – Launcher capacity limitations

• Data Quality Constraints
 – Increased drag at lower altitudes degrades data quality
 – Certain errors are proportional to drag amplitude, e.g.
 • Errors due to ACC mis-alignment
 • Errors induced by satellite angular rates

• Possibilities: For a 500 km initial altitude
 – Low Drag: 5 years to 450 km altitude
 – High Drag: (no re-boost)
 • 3 years to 420 km altitude
 • +1 year to 370 km, re-enter in one year
Inclination & Eccentricity

- **Inclination**
 - Effects of polar gaps (for non-polar orbits) on gravity field estimates is well known
 - To ensure global coverage, GRACE inclination has been changed to 89°.
 - Constraint: 70 kg payload penalty per degree

- **Eccentricity**
 - Science motivation to circularize the orbit
 - Uniformity of data quality
 - Attitude related errors in ACC due to aerodynamic disturbance environment
 - Mis-alignment errors in ACC proportional to drag amplitude
 - Facilitate “Local” methods of data analysis, which appear to benefit from smaller altitude variations
 - Resulting constraints on mission operations
 - Launch Eccentricity : < 0.0025 (3σ)
 - Orbit maneuvers designed to “conserve” eccentricity
Inter-Satellite Separation

- **Science Motivation**
 - Avoid non-observability of lower gravity harmonics

\[S_{\text{max}} \leq \frac{360^\circ}{N_{\text{max}}} \]

 - Uniformity of separation is a virtue: Ensures uniform sensitivity of measurements to gravity field

- **Effect of Increasing Separation**
 - Signal:
 - Low frequency gravity signal is amplified
 - Noise:
 - Oscillator & system noise contributions increase

- **Constraints on station-keeping**
 - Maneuvers should be required no more than once every 60 to 90 days, to minimize data gaps in a solution period

- **Mission Baseline**
 - Nominal Separation : 2° (220 km ± 50 km)
Ground-Track Control

- **Science & Mission Constraints**
 - For coverage repeatability, as with other remote-sensing missions, Repeat Ground Track control is desirable
 - However, insufficient fuel available for ground-track repeat

- **Ground-Track Profile: Freely drifting**
 - In general, over 30 days, sufficient global track density is obtained to enable degree/order 180 solution
 - Exceptions: Certain episodes of short-period repeat

- **Impact on Mission**
 - Orbit re-boost/de-boost to avoid short repeat periods
 - Schedule orbit/satellite maintenance activity

- **Impact on Data Analysis**
 - Extend solution interval until sufficient coverage obtained
 - Overlapping gravity field solution intervals
 - Unique, high (time) resolution science?
Data Analysis

• **Signal Variations**
 – Large gravity variations exist at all spatio-temporal spectral domains
 – Mapping into SST signal domain is complicated
 • Mean field aliasing due to omission/commission
 • Time variable field aliasing due to under-sampling

• **Analysis Constraints**
 – Global sampling to desired data density takes time
 – As a result, slower gravity field variations can be tracked by GRACE gravity solutions (~ 30 days or longer)

• **GOAL:** Minimize aliasing due to non-estimatable high frequency variations

• **Analysis Requirements**
 – Need a-priori models for time-variable gravity phenomena (in particular, the high frequency variations)
 • Atmosphere, Oceans, Tides, etc…
 – Need a good, high resolution a-priori mean field model
 – Open Questions:
 • Trade between aliasing & spatio-temporal resolution
 • Algorithms for input gravity corrections data
 • Use “constraints” based on available knowledge

(Answers available following the Fall ‘01 AGU meeting ?!?!)